Characterization and Utilization of Noisy Displacement Signals from Simple Shear Device using Spectral, Linear, and Kernel Regression Methods

نویسندگان

  • Eric Yee
  • Frederic P. Schoenberg
  • Jonathan P. Stewart
چکیده

Small strain testing of dynamic soil properties such as threshold strains, tv , are often conducted using specialized devices such as dual-specimen simple-shear, as devices configured for large strain testing produce noisy signals in the small strain range. Working with a simple shear device originally developed for large-strain testing, we extend its low-strain capabilities by characterizing noisy signals and utilizing several statistical methods to extract meaningful responses. We utilize spectral analysis and linear regression of a transformed variable to estimate the cyclic shear strain from a noisy signal and the confidence interval on its amplitude. We utilize Kernel regression with the Nadaraya-Watson estimator and a Gaussian kernel to evaluate vertical strains response. A practical utilization of these techniques is illustrated by evaluating threshold shear strains for volume change with a procedure that takes into account uncertainties in the measured shear and vertical strains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Volumetric Threshold Strain Considering Noisy Feedback Signals from Simple Shear Device

Statistical methods are presented to help evaluate cyclic test results in the small amplitude range. We utilize several statistical methods to extract from noisy feedback signals meaningful response parameters at very small strain levels. Previous work has shown that the uncertainty in the estimation of vertical strains is much greater than that for shear strains. Hence, we focus in this articl...

متن کامل

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

Non Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations

Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...

متن کامل

hp-Spectral Finite Element Analysis of Shear Deformable Beams and Plates

There are different finite element models in place for predicting the bending behavior of shear deformable beams and plates. Mostly, the literature abounds with traditional equi-spaced Langrange based low order finite element approximations using displacement formulations. However, the finite element models of Timoshenko beams and Mindlin plates with linear interpolation of all generalized disp...

متن کامل

Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method

In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009